
Journal of Applied Mechanics and Technical Physics, Vol. 38, No. 2, 1997 

D E S I G N  OF L A Y E R E D  V I S C O E L A S T I C  S H E L L S  

F R O M  A D I S C R E T E  S E T  O F  M A T E R I A L S  

E. A. Bondarev,  V. A. Budugaeva, and E. L. Gusev UDC 539.3 

The current state of the problem of optimal design of complex structures from a specified set of 
materials under various restrictions on their characteristics is described in detail in [1-3] where particular 
methods were proposed for the synthesis of layered elastic cylindrical shells that ensure necessary damping of 
vibrations under various external actions and restrictions on the mass or total thickness of a structure. 

Among the problems of the dynamics of elastic structures, the problem of free vibrations occupies 
a special place. The reason is that the characteristics of free vibrations (natural frequencies and modes) 
completely determine the individual properties of a mechanical system and are most important for analysis of 
its forced vibrations. Therefore, the problems of structural synthesis from a finite set of materials with various 
restrictions on eigenfrequencies are of special interest. Alekhin's paper concerning the problem of synthesis of 
a layered cylinder and a sphere of minimal mass [4] has been so far the first and only paper on this subject. 

The widespread use of polymeric materials in engineering necessitates the study of the problems of 
optimal design of inhomogeneous structures with viscoelastic properties. Therefore, it is of great interest 
to analyze the peculiarities of the problems of optimal design of viscoelastic systems in relation to similar 
problems for elastic structures. In addition, this analysis is interesting and is of significance, because the 
damping properties of viscoelastic materials can be used to advantage in designing structures from a material 
that possesses the required properties. In other words, the  problem arises whether the peculiarities of wave 
passage through the boundaries of various materials can improve the viscoelastic structure. This question 
can be put in another way: can viscoelasticity be a dominating physical factor compared with thc effects of 
reflection and refraction at the boundaries? 

There are a number of papers devoted to direct problems of calculation of viscoelastic structural 
characteristics (see, e.g., [5]). The most important scientific result of these studies lies in the absence of 
a monotonic dependence of the dissipative characteristics of viscoelastic structures on the geometrical and 
other parameters of structural inhomogeneity. This result can serve as a basis for formulation of the problems 
of synthesis of layered structures from viscoelastic materials with restrictions permitting the satisfaction of 
structural limitations important  for practical applications (minimum weight, maximum damping factor, etc.). 

1. Let us analyze the effect of the arrangement of a structure synthesized from a finite set of viscoelastic 
materials (the viscoelastic parameters of materials and the location and thicknesses of layers) on the damping 
of free vibrations using the example of a multilayered spherical shell in which each layer is viscoelastic and 
its mechanical properties depend on the layer number n. 

The problems of free vibrations are classified as problems in which the inertial terms completely 
determine the material's behavior. For this, it is necessary that the boundary conditions be such that the 
work of all external and mass forces identically equals zero. 

With allowance for the viscoelastic analogy, the direct problem of natural vibrations of a viscoelastic 
spherical shell can be solved similarly to the corresponding problem of the elasticity theory in which elasticity 
moduli are replaced by complex viscoelasticity moduli. 
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TABLE 

Material 
number 

A # 

6 
16 
34 

6 
16 
34 

~J 

7.04 
8.14 
8.39 

Free vibrations of a homogeneous viscoelastic sphere are described by the following boundary-value 
problem: 

Oar ar - a~ 02u 
0--7: - + 2 - r  -P Ot 2 ; (1.1) 

~rr = (~ + 2fi) 0-~ + 2i  u., (1.2) 
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a~ = 2( i  + p) u + ~ Ou r 0-~' R1 < r < R2; (1.3) 

q r (n l )  = crr(n2) = 0. (1.4) 

Here R1 and R2 are the inner and outer radii of the spherical shell and i and 12 are the viscoelastic Lain6 
parameters which can be represented by means of the freezing method [6] as follows: 
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V~,.(WRe) = f Rx.(r)  cos(wa~r) dr, 
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s / F~,,(WRe) = n , , ( r )  sin(wrter)dr, 

where A,, #n, Rxn, and Run are the Lam6 parameters and the parameters of the relaxation kernels of the 
material that occupies the layer n (for a homogeneous sphere, n = 1) and WRe is a real constant. 

The solution of problem (1.1)-(1.4) is of the form 

{ ee2 ~_ } { ae c o s ( ~ r ) a e 2  sin(aer)}; (1.7) cos(~)+ ~ sin(~) + i ( c ~ - c 2 )  - - g  - - - 7  ~(~) = (c1 + c2) 

~r(r) = (C, + C2)[(4g~e/r) cos(a~r) - (4U/r 2 - ~e2(A + 2U)) sin(~r)] (~e/r) 

+ i(C1 - C2)[(4#ae/r) sin(eer) + (4#/r  2 - ae2(~ + 2#))cos(~er)] (ae/r). (1.8) 

Here ee 2 = pw2/(~ + 2/~); and the bal ~ and # is omitted. 
Determining the constants from the boundary conditions (1.4), we obtain the characteristic equation 

c~ - R')l { (4" N - _ 

~ (4#a~) 2 4 .  4 .  
q-s in[~e(R2-R1)] l .  RIR2 + (~1"1 --/X~2)(~222--PtO2)} --0" (1.9) 

For elastic materials, the coefficients ~ and # are real, which corresponds to the equalities i = A and 
/2 = # in relations (1.5). Using the calculation results of Alekhin [4], one can check the validity of the solution 
of (1.9). The initial values of the parameters are listed in Table 1. It was assumed that R1 = 0.8 and Re = 1.0. 
The eigenfrequencies for each of the three materials presented in Table 1 agree with the results of [4] up to 
the third decimal point. 
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In the description of viscoelastic materials, the volumetric strain was assumed to be purely elastic. 
i.e., the volume-compressibility modulus K = A + (2/3)tt is a constant, and, to describe shearing strains, the 
Rzhanitsyn-Koltunov kernel [7, 8] Rt~ = A exp ( - ~ t ) / t  1-~ was used (in the mechanics of polymers, this kernel 
is mostly used). 

In the computational experiment, the influence of the parameters A and o~ on the damping factor of 
natural vibrations of a homogeneous spherical viscoelastic shell was studied. The outer and inner shell radii 
and the B value were chosen as follows: R1 = 0.8, R2 = 1.0, and D = 0.05. In this study, the conclusion of [7] 
on the negligible influence of the parameter  ~ on the damping factor was taken into account. This result is 
not universal and is valid only for materials with small 8. 

Figure 1 shows the results of calculations carried out using only the elasticity constants for material 
No. 3 in Table 1, since the general tendencies to variations in rheologic parameters are the same for all 
materials (solid curves refer to the real part of the complex frequency wl~, and dashed curves refer to the 
imaginary part of the complex frequency ~Im)- 

Analysis of the results permits one to draw the following conclusions. 
(1) For cr = 0.9, the real part of the complex frequency is not dependent on the parameter  A and 

is equal to the natural  frequency of elastic vibrations. A similar tendency is also observed for ~ = 0.5 if 
A < 10 -2, and then ~Re begins decreasing slightly. 

(2) For low or, the behavior of WRe becomes more complicated: the value of WRe remains constant for 
A < 10 -3 and drastically decreases for other values. 

(3) For all c~, the imaginary part of the complex frequency grows with parameter  A. It first increases 
according to a linear law, the linear low is then violated, and deviation from linearity occurs, depending on 
the values of ~ and of the elasticity constants: for o~ = 0.1, the rate of UJim growth increases, while, for ~ = 0.9. 
the rate first grows slightly and then decreases until a horizontal asymptote is reached (see, for example, the 
curve for (~ = 0.9). At the same time, for o~ = 0.5 the ~Im-A dependence remains linear almost over the entire 
range of the parameters. 

2. The solutions of (1.7) and (1.8) can obviously be extended to a multilayered sphere [9]. We introduce 
the following notation: 

Ai = (c i (r i - l )b i (r i -1) -  di(ri-1)ai(ri-1)) -1 (i = 1 ,N),  
9 

ai(ri-1) = ae~ cos(zeiri_l) at- zei ), 
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Then 
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In this case, the boundary  conditions 

~ ( r ~ )  = ~l(r0) = 0, 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

which correspond to conditions (1.4) with r0 = R1 and r N = R2, are satisfied. 
We shall use these solutions to analyze the behavior of viscoelastic structures. The  analysis is aimed 

at demonstrat ing the possibility of controlling the damping characteristics of these structures by the methods 
applied to the synthesis of elastic structures. 

Let us first consider a sphere formed from two materials with the same viscoelastic parameters  (a = 0.5. 
/3 = 0.05, and A = 0.01) but  with different elastic characteristics: the density and the Lam~ parameters  of the 
first (inner) layer correspond to material  No. 3 in Table 1, and those for the second (outer) layer correspond 
to material No. 1. The  inner and outer radii of the sphere are r0 = 0.8 m and r g = 1.0 m, respectively. 
Figure 2 shows the real (WRe) and imaginary (wire) parts of the natural  frequency w versus the coordinate 
of the viscoelastic-layer interface rl (the designations are the same as in Fig. 1). The  m a x i m u m  damping, 
i.e., a maximum of wire = -13 .24 �9 10 -3, is ensured by a two-layer structure with r~ = 0.944 m. The same 
damping is ensured by a two-layer s tructure whose outer  layer is formed from material  No. 2. In this case. 
the coordinate of the interface between the inner (formed from material No. 3) and outer  layers is r~ = 0.928 
(Fig. 3). 

Figure 4 shows the wae and Wim dependence on rl when the density and the Lam~ parameters  of the first 
layer correspond to material  No. 1, and those for the second layer correspond to material  No. 3. In this case. 

301 



a~Re -a)im 8.5 13.5.10 -3 

gORe -gOIm 

- -  13.18.10 "3 

8 "='" 1 3 , 1 ~  3 ~ - - ~  = ~ . - . ~ -  

I 13"25'10"3 

, 
, I 

i t 
I 

7: 12.10 -3 8.0 I 13.10 -3 
0.8 0.9 r~ 1.0 0.944 r~' r 2 1.0 

Fig. 4 Fig. 5 

the maximum damping is ensured by a single-layered sphere formed from material No. 3 (wire = -13.18.10-3). 
The results shown in Figs. 2-4 indicate that the variation in the thickness and in the order of 

arrangement of viscoelastic layers permits one to control the damping properties, the maximum damping 
being ensured by the two-layer structure. Almost the same damping (wire = -13.25 �9 10 -3) is ensured by the 
three-layer structure: the layer r0 = 0.8 and rl = 0.944 is filled with material No. 3, the next layer is filled 
with material No. 2 up to r2 = 0.976, and the outer layer is filled with material No. 1 up to r u = 1.0 (Fig. 5). 

The main conclusion that can be drawn on the basis of the results obtained consists in the positive 
answer to the questions that we put at the beginning of the paper: multilayered viscoelastic structures ensure 
better damping of natural vibrations than single-layered structures. Certainly, this conclusion is valid for the 
adopted values of the rheologic parameters and for the adopted type of the relaxation kernel. Thus, subsequent 
studies can be performed along two lines: 

(1) obtaining a priori evaluations of the expediency of formulation of the synthesis problem of 
multilayered structures from a finite set of viscoelastic materials in terms of rheological characteristics; 

(2) solution of the synthesis problem when all parameters determining the arrangement of a structure 
(physical properties of layers materials, the thicknesses and total number of layers) vary. 
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